MATHEMATICS APPLICATIONS

MAWA Semester 1 (Unit 3) Examination 2020

Calculator-free

Marking Key

© MAWA, 2020

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• 12th June, the end of week 7 of term 2, 2020

Section One: Calculator-free

(50 Marks)

(5 marks)

(3 marks)

Question 1

Question1 (a)

Question 1 (b)

(2 marks)

Solution	
Graph has exactly 2 odd vertices \Rightarrow Semi-Eulerian	
\Rightarrow Traversable	
Marking key/mathematical behaviours	Marks
 identifies the correct rule for a Semi-Eulerian trail 	1
 states that a Semi-Eulerian trail is traversable 	1

Question 1 (b) Alternative solution

Alternate solution		
$v+f = e+2 \Longrightarrow$ 5+5 =8+2	A E D	
Marking key/mathematical behaviours		Marks
uses a planar graph to count the faces	, edges and vertices	1
 shows Euler's rule concerning traversit 	bility holds for this graph	1

Question 2 (a)

(2 marks)

Solution		
$T_{n+1} = T_n + 3, T_1 = 5$		
Marking key/mathematical behaviours	Marks	
 states term n+1 recursively, correctly 	1	
• states term 1.	1	

Question 2 (b)

(2 marks)

		Solution		
	Ring number	Guests that arrive	Total guests	
	1	5	5	
	2	3	8	
	3	3	11	
	4	3	14	
	5	3	17	
	10	3	32	
Mark	king key/mathematical beha	viours		Marks
 completes the table correctly for ring numbers 1-5 		1		
completes correctly for ring number 10		1		

Question 2 (c)

(1 mark)

Solution	
$T_n = 5 + 3(n-1) = 3n+2$	
Marking key/mathematical behaviours	
• states the n^{th} term correctly	1

Question 2 (d)

Question 2 (e)

Solution	
It is a step graph, as the number of guests is always a whole number that 'jum	nps' at each
ring of the doorbell. The 'jumps' are always the same (ie. the common differer	nce of the
sequence). In between the doorbell rings, the graph is flat, as the number of g	juests
remains constant. After the first doorbell ring, the left-hand end of each 'step' i	follows the
rule $N = 2 + 3n$ ($n = 1, 2, 3,, 10$)	
Marking key/mathematical behaviours	Marks
identifies the graph (any appropriate description acceptable)	1
 indicates that the gradient of the 'dots' is connected to the constant 	
difference of the sequence	1

CALCULATOR-FREE MARKING KEY

Question 2 (f)

(2 marks)

٦

Solution	
Arithmetic sequence	
It is a step graph, as the number of guests is always a whole number that 'jum ring of the doorbell. The size of the 'jumps' reflect the common difference of the In between the doorbell rings, the graph is flat, as the number of guests remain After the first doorbell ring, the left-hand end of each 'step' change with a grace (equal to the common difference of the sequence) and follow the rule N = 2 + 3n ($n = 1, 2, 3, 10$)	ps' at each e sequence. ns constant. lient of 3
Marking key/mathematical behaviours	Marks
 states that the sequence is 'arithmetic' 	1
 links the size of the jumps and the gradient of the 'dots' to the constant difference of the sequence 	1

Question 2 (g)

Solution	
Since there were at least 120 guests at the party, then	
$T_n = 2 + 3n \ge 120$	
$\therefore 3n \ge 118$	
\Rightarrow $n \ge 39.3$	
\Rightarrow the door bell must have rung at least 40 times.	
Marking key/mathematical behaviours	Marks
 identifies a correct equation of inequation to solve 	1
 solves it correctly and draws the appropriate conclusion 	1

Question 3

(10 marks)

Question 3 (a)

(1 mark)

		Solution			
		School A	School B		
	Not satisfied	50	200		
	Fairly satisfied	50	250		
	Very satisfied	250	550		
Mathematical behaviours				Marks	
correctly completes the table			1		

Question 3 (b)

(2 marks)

Solution	
The survey only reaches those who do access their school email.	
Every child's parent was sent the email so parents are able to respond multiple	times if
they have more than 1 child in the school.	
Some people may not respond to the email. Other valid reasons.	
Mathematical behaviours	Marks
explains one issue	1
explains two issues	1

Question 3 (c)

Solution	
$\frac{200}{250} = 80\%$	
Mathematical behaviours	Marks
states correct fraction	1
 states correct percentage 	1

Question 3 (d)

(5 marks)

Solution	
(i)	
Yes. For the high school the percentage of Very Satisfied parents is $\frac{550}{1000} = 55$	% . This
means the primary school's Very Satisfied parents (71%) is a larger percentage)
(ii)	
The principal's claim is not true. Whilst there does seem to be a relationship be	etween the
type of school and the percentage of Very Satisfied parents, we cannot conclud	le that the
school type causes the level of satisfaction.	
Mathematical behaviours	Marks
(i)	
states yes	1
 calculates the percentage correctly 	1
 compares the percentage of the primary school with the high school 	1
(ii)	
states the claim is not true	
 correctly justifies the decision 	1
	1

(5 marks)

Question 4 (a)

(3 marks)

Question 4 (b)

Solution $v + f = e + 2 \Rightarrow 7 + 9 = 14 + 2$ Marking key/mathematical behavioursMarks• states Euler's formula1• shows the formula is true for this graph1

Question 5

(8 marks)

(2 marks)

Question 5 (a)

(1 mark)

			Solu	ution				
Vertex	А	В	С	D	E	F	G	
Degree	4	4	3	6	3	3	5	
Marking key	/mathemati	cal behavio	urs				Marks	
• com	pletes all th	e table corr	ectly				1	

Question 5 (b)

 0 ODD vertices ⇔ Eulerian trail 2 ODD vertices ⇔ Semi-Eulerian trail 3 ODD vertices ⇒ the network is neither Eulerian nor Semi-Eulerian 		
Marking key/mathematical behaviours		
states the network has 3 odd vertices	1	
 states the condition for a Eulerian trail 	1	
 states the condition for a Semi- Eulerian trail 	1	

Solution

Question 5 (c)

Solution		
From the table we consider the odd vertices and to make them even we remove a	an	
appropriate edge.		
Also, by removing an edge that starts and finishes at an odd vertex we can change the		
number of odd vertices in the graph from 4 to 2 which gives a Semi-Eulerian network.		
The edges are EF, EG, or FG		
Marking key/mathematical behaviours Mark		
states the network is Semi-Eulerian	1	
correctly lists the 3 edges	3	

Question 6

Question 6 (a)

(3 marks)

(4 marks)

(8 marks)

Question 6 (b)

(2 marks)

Question 6 (c)

(3 marks)

Solution				
(i)				
See dotted line in graph above. Approximately 38 emails.				
(ii)				
This result is reliable as there is a strong correlation and the prediction involves				
interpolation				
Mathematical behaviours	Marks			
(i)				
 correctly states value from graph 	1			
(ii)				
 states reliable noting the strong correlation 	1			
notes interpolation	1			

Question 6 (d)

(1 mark)

Solution	
The line would become steeper.	
Mathematical behaviours	Marks
 states the effect on the slope correctly 	1